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Abstract: This study aimed to explore the directional stability issues of a previously studied light box-
wing aircraft model with a pusher propeller engine in the fuselage aft section. Earlier configurations
have included the use of fuselage together with a lifting system consisting of two wings joined
together at their wingtips with vertical stabilizers. However, these side vertical surfaces failed to
provide the aircraft with sufficient directional stability, thus prompting the quest in this study for
novel solutions that would exclude the need for a fuselage extension and a typical fin. Solutions
included the use of a ducted propeller and few configurations of small “fishtail” vertical fins, which
formed part of the aft fuselage itself and coupled with vortex generators on the fuselage surface to
improve their interference and heal flow separation at the fuselage aft cone. The results of wind
tunnel testing were supported with CFD simulations to explain the flow behavior of each of the
studied solutions. Tuft visualization and computed flow patterns allowed identification of the sources
of the observed low efficiency in terms of directional stability of the fishtail against a simple idle duct
without a propeller. A final configuration with a duct and a modified version of the fuselage fins was
achieved that provides enough yaw stability margins for a safe flight.

Keywords: box-wing; tailless; flow visualization; directional stability; yaw moment; tufts

1. Introduction

Despite the long known aerodynamic and structural gains of joint wing configurations
in allowing significant wing spans and higher lift-to-drag ratios, due in particular to a lower
induced component of drag, only very few prototypes have reached serial production, with
most concepts never leaving the drawing board. With the idea of using a second wing for
both pitch control and increasing the total lifting surface, a particular operational issue
of stability concerns in the yaw channel arises due to the absence of a vertical tail with
sufficient lever arm and static moment. Wind tunnel investigations [1–5] have revealed
that even vertical surfaces that are large enough at the wing tips and have a total area
equivalent to a conventional tail will fail to provide enough moment to ensure directional
stability. For this reason, most tandem-wing aircraft are equipped with a conventional
vertical fin at the aft fuselage [6–8]. The fin and the unnecessary fuselage length extension
lead to a significant wetted area and friction drag penalties, which hinder the induced
drag benefits of the concept. Given Prandtl plane concepts are of particular interest for
green transport aviation, most recent studies are dedicated to stability issues of large box-
wing aircraft concepts [9–13], with extremely few articles about light box-wings. Stephen
et al. [14,15] found that stability margins of heavy transport can be improved if the wings
have the same area and their spacing is increased. In addition, in terms of stability and
flight safety, box-wing concepts have been found to fit regional and smaller aircraft mission
profiles rather than larger airliners. Part of the box-plane research project “PARSIFAL”, a
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comprehensive study by Cipolla et al. [16–18], concluded that static longitudinal stability
issues can be leveraged through simultaneous geometrical optimization of both wing
sweep angle and spacing, i.e., dihedral as well as the area. However, directional stability
details are missing in this concept due to it being equipped with a conventional twin tail
with large vertical surfaces that ensures enough stability margin at the cost of a significant
wetted area. As can be noted from most recent studies [9–18], longitudinal stability of
box-planes has been studied very thoroughly, in particular for heavy transport mission
profile at transonic speeds. There is, however, a significant knowledge gap concerning
directional stability, especially for a light subsonic box-wing lacking a conventional fin.
Taking into account the importance of this issue for flight safety, crosswind landings, spin
tendency, and recovery, this topic is urgent. Therefore, this study aimed to fill this gap by
providing both experimental and computational data.

In this research, novel concepts were studied in a wind tunnel experiment supplied with
CFD flow pictures. These included modifying the shape of the aft fuselage to incorporate
vertical “fishtail” fins, along with a ducted pushing propeller, which is already known to be
safer and more efficient in generating thrust. The baseline test model was a tailless box-plane
design with the wingtips joined with vertical fins. Previous conceptual design and wind
tunnel experiments of this box-plane model have investigated the Prandtl plane layout
for general aviation applications, confirming both its well-known advantages against an
equivalent monoplane and providing solutions to some of its disadvantages [1–5]. This study
represents a further development in this research intended to improve the aft fuselage local
aerodynamics and solve directional stability issues. Previous experiments have focused on
the general aerodynamics of lifting surfaces, fuselage, and the wing fuselage junction areas.
This study examined secondary lifting surfaces consisting of a highly nonconventional tail
assembly: a ducted fan, different shapes of upper and ventral fishtail fins, combined with
few patterns of vortex generators. Even without a propeller, the large “idle” duct was found
to generate enough stabilizing yaw moment for directional stability at small sideslips. This
effect of the duct was compared to that of vertical stabilizing fishtail surfaces. The shape of
these surfaces is designed to minimize the interference drag by integrating their geometry
into that of the fuselage aft cone using bioinspired curvilinear shapes tangent to the fuselage
line, hence the term “fishtail” (Figure 1). As previous tuft flow experiments have revealed
a separation of the aft fuselage cone [4], vortex generators were added in an attempt to
sustain an attached flow over the fuselage aft to both reduce its drag and maximize fin
efficiency. It was found, however, that the idle duct still provided better directional stability
than the combined effect of the vertical fins and vortex generators, probably due to the
insufficient area of theses surfaces, which was limited by the ability of the material to
withstand air pressure. Taking into account the fact that these are non-airfoiled flat plates
with little structural depth and easy to bend under pressure, a few preliminary experiments
with trial and error allowed estimation of the maximum feasible area.
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Figure 1. Tested configurations of the box-wing model equipped with (a) an idle duct and (b) vertical
fishtail surfaces.
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Tuft flow visualization, together with computed pressure and velocity fields near the
tail of the studied configurations, revealed insights into the reasons for the low efficiency of
the fishtail surfaces, with these fins being strongly influenced by the aft fuselage local flow.
The fuselage sidewash was found to significantly reduce the local angle of the attack of the
upper fin, while the ventral portion at certain angles of sideslip had a quasi-complete flow
separation of the aft cone. Attempts to use wing root fairings, large vortex generators on
the fuselage top, and a few patterns of small- and medium-sized VG strakes on the fuselage
sides resulted in better flow but insignificant improvements in directional stability. CFD
streamlines revealed the size of 3D vortical structures and separation bubbles to be much
larger than the vortices from the vortex generators; hence, the model remained unstable.
Next, installing the duct allowed the model to gain neutral stability until sideslip angles
of ~4◦. The duct suffered less interference with the separated aft cone due to its outer
section being in much cleaner air and its inner section being much further away from the
fuselage surface. Despite that, streamlines, pressure, and velocity fields revealed that the
fuselage sidewash caused the inner (shaded) section to experience a significant loss of angle
of attack. Beyond sideslip of ~8◦, the outer section of the duct separated and lost efficiency
as well. Hence, the model remained unstable at sideslips larger than 4–6◦. Finally, with the
duct providing additional hard points, we investigated attaching to it a pair of large-sized
flat plates similar to fishtail fins but with much larger area. With this final configuration of
combining the duct and large fins, the model became stable well until large sideslips of ~10◦.

It is worth noting that the experiments took place with an idle duct without a propeller.
We believe that a rotating pusher propeller would provide enough sucking force to sustain
an attached flow on the aft cone, leading to significant efficiency improvement of both the
duct itself and the fishtail fins in ensuring more yaw stability. Hence, our current results
could be used to validate a dead-stick landing and off-design condition of an idle duct.
Future experiments with a rotating propeller might confirm these assumptions. The novelty
of this research lies in using multiple nonconventional elements for directional stability of
a tailless box-plane layout. These solutions exclude the necessity for a conventional tail fin
with an extension of the aft fuselage, hence producing the least possible wetted area and
friction drag penalties.

2. Materials and Methods
2.1. Wind Tunnel Experiment
2.1.1. Geometry

To improve the directional stability of the previously studied baseline model of a box-
plane aircraft and to investigate innovative ways to boost the yaw channel performance of
this aircraft concept, the baseline wind tunnel model was fitted with a duct fixed on 8 thin
transversal spokes in the aft-most section of the fuselage, where a future piston engine
with a pusher propeller would be installed. Thin spokes were dropped from the CAD
model given their effect was neglected (Figure 1a). Another configuration was fitted with
flat-plate “fishtail” surfaces tangent to the fuselage lines (Figure 1b), along with vortex
generators. Both configurations included tufts for local flow visualization (Figure 2). As
the model did not possess a classical tail empennage, yaw control was achieved by rotating
rudders located on the vertical fins at the wing tips.
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Figure 2. Models with tufts for flow visualization in T-1 wind tunnel 2.25 × 3 m test section (a) with
an idle duct and (b) with vertical fishtail surfaces.

Details of the baseline model geometry of the wind tunnel model can be found in [3].
The following main parameters of the wing and fuselage are listed here for reference.

Dimensions (fuselage length × wing span ×
fuselage height)

0.709 × 1.1 × 0.207 m

Wing aspect ratio 12 (both wings)
Fuselage aspect ratio 3.42
Wing sweep angle at 1

4 chord 1.6◦ (fore wing); 3.2◦ (aft wing)
Airfoil NACA 3413 (fore wing); NACA 4415 (aft wing)
Airfoil relative thickness 15% (both wings)
Wing incidence angle 2.5◦ (fore wing); 2◦ (aft wing)
Elevator-to-wing area ratio 0.17 (both wings)
Flaperon-to-wing area ratio 0.03 (both wings)

Geometry of Fishtail Surfaces

Two configurations of vertical fins were tested. The first was a small version with
minimum wetted area, henceforth designated as “S”, and fins with a total area of 65.5 cm2

(Figure 3a). The second had twice the total area, henceforth designated as “L”, and fins
with a total area 113 cm2 (Figure 3b). Linear dimensions of both the upper and ventral “L”
fins are shown in Figure 4 below.
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Expected outcomes: 
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Figure 4. Dimensions of the large configuration “L” of vertical fins: (a) upper portion of the “L” fin,
(b) ventral part of the “L” fin.

Geometry of the Duct
Airfoil NACA0012 (symmetric)
Airfoil thickness 0.5 cm
Duct diameter 17 cm
Hub diameter 3 cm
Spokes 7 × 0.3 cm (8 total)

The duct and its hub were 3D printed from high stiffness plastic; the hub was printed
with embedded holes for metallic spoke installation (Figure 5b).
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Vortex Generators

The following problems could be solved using VGs:

• Lateral stability improvement;
• Increasing high-lift devices efficiency.

Suggested positioning:

• Bottom aft fuselage
• Outboard leading edges

Expected outcomes:

• Drag reduction;
• Attached flow on high-lift devices;
• Attached flow on the fuselage aft cone.
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Hence, few patterns of small-sized (SVGs), medium-sized (MVGs), and large-sized
(LVGs) vortex generators made from tin plate were tested in different locations, and
their effect on the fuselage aft cone flow separation as well as on the directional stability
were studied.

Table 1 presents the geometrical features of the tested configuration.

Table 1. Geometrical parameters of the tested configurations of vortex generators.

Configuration
Skew
Angle
δ◦

Height h
cm

Length l
cm

VGs Pitch in
a Pattern L

cm

Patterns
Pitch λ

Min. Distance
to Separation

Line ∆Xvg
cm

LVG_1 42 1.1 4.9 4.5 - -
LVG_2 −42 1.1 4.9 4.5 - -
MVG_1 35 0.75 1.5 1.5 - 2
MVG_2 35 0.75 1.5 1.5 - 0
MVG_3 −35 0.75 1.5 1.5 - 0
SVG_1 42 0.5 0.75 1 - 6
SVG_2 42 0.5 0.75 1 - 2

Illustration
of the

geometrical
parameters of

the vortex
generator [19]
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Large vortex generators (LVGs) were installed on top of the fuselage center-aft section
in order to delay separation at high angles of attack. Figure 6 shows the LVGs tested
in different positions. In the figure, the converging position is denoted as “1” and the
diverging as “2”, and the geometrical dimensions of a single VG strake is also given. The
LVGs on the wind tunnel test model is given in Figure 7.
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Medium-sized vortex generators (MVGs) had the following parameters:
Skew angle δMVG ~±35◦

Pitch LMVG ~1.5 cm
A single MVG strake height ~0.75 cm
A single MVG strake length ~1.5 cm

MVGs were also tested in a few configurations: along a vertical line with a positive
βMVG, denoted as MVG_1, and a pattern along an inclined line corresponding to the aft
cone separation line with a positive βMVG = +35◦, denoted as MVG_2, and with a negative
βMVG = −35◦, denoted as MVG_3. All configurations on the wind tunnel model are
illustrated in Figure 8 below.
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Figure 8. Medium-sized MVG in 3 positions: (a) vertical pattern upstream separation line, (b) inclined
coincident with the separation line, and (c) inclined coincident with SL with a negative skew angle.

Small vortex generators (SVGs) had the following geometry:
Skew angle δSVG ~42◦

Pitch LSVG ~1 cm
A single SVG strake height ~0.5 cm
A single SVG strake length ~0.75 cm

Vertical patterns of SVGs were tested in 2 locations: SVG_1, which was close to the aft
wing suction peak and well upstream the aft cone separation zone, and SVG_2, which was
closer downstream to the separation line (similar to MVG_1), as shown in Figure 9 below.
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2.1.2. Wind Tunnel Test Conditions

The main geometry and structure of the test model are detailed in [3]. Fine thin silk
tufts about 1 cm in length were glued to the surface for local flow observations. The initial
tufts axes were coincident with the undisturbed velocity vector or the aircraft X-axis. Tests
were carried out in wind tunnel T-1 of the Moscow Aviation Institute, which is a subsonic
open return circuit type with an open test section. Measurement errors were in the range
3–5%. The main flow parameters at the test section were as follows.
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Velocity V∞ 38 m/s
Pressure p∞ 100,500 Pa
Temperature T∞ 293 K
Turbulence intensity ε 0.35%
Reynolds number Re ~106

Test section dimensions Diameter 2.25 m * Length 3.5 m

2.2. CFD Model
2.2.1. Meshing

RANS CFD experiments using ANSYS Fluent were performed on a 30–50 million
cells unstructured mesh generated in ANSYS Meshing (Figure 10). For boundary layer
resolution, a prismatic layer of 15 layers was built around the wing, fuselage, and additional
surfaces (i.e., the duct and fins), as shown in Figure 11. Given the significant impact of the
aft fuselage local flow on tail aerodynamics, an extensive automatic refinement algorithm
was set as face sizing with a minimum element size of ~10−4 m. Based on a similar mesh,
the CFD model of the initial configuration was validated against wind tunnel data in [4]. In
Figure 12, the wall Y+ function distribution is provided.
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2.2.2. Governing Equations, Discretization Schemes, and Turbulence Modelling

Below are the governing equations solved by the RANS model for an incompressible,
low subsonic flow:

Continuity equation:
∇.(ρ

→
v ) = 0, (1)

Momentum conservation:

∇.(ρ
→
v
→
v ) = −∇p +∇.(τ). (2)

The low subsonic flow (M < 0.3) is incompressible: ρ = const; hence, the energy
conservation equation was not included in the CFD setup. In addition, as the flow field
was incompressible and the temperature was constant (T~293 K), viscosity was treated
as a constant value and calculated by the solver based on the chosen fluid material “air”:
µ = const.

Pressure–velocity coupling was performed through a “coupled” scheme in ANSYS
Fluent. For spatial discretization, the Green–Gauss node-based gradient evaluation algo-
rithm was applied; a second-order upwind convective scheme was used for the pressure,
density, and momentum. For most of the tested geometry configurations, the solutions
converged within 700–1500 iterations.

Turbulence Modelling

Based on the validated initial aircraft configuration [4], the shear stress transport
(SST) k-v turbulence model was applied in the current study as well, resulting in good
agreement with the wind tunnel experiment of the visualized flow pictures, including the
onset prediction and magnitude of the flow-separated areas at the fuselage aft cone (see
Table 2 below). The standard k-v model was based on the following transport equations
for the turbulence kinetic energy, k:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj
(Γk

∂k
∂xj

) + Gk −Yk (3)

and the specific dissipation rate, v:

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj
(Γω

∂ω

∂xj
) + Gω −Yω (4)
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Table 2. Computed and tuft-visualized flow field near the aft fuselage and large vertical fins.

β◦ 4◦ 7◦ 9◦

Tuft flow
visualization
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purpose of defining the values of total force and moment coefficients. Instead, CFD exper-
iments were used to supply the wind tunnel data with better details of local and global
three-dimensional flow fields, which are hard to achieve in the actual physical experiment.

For validation, the values of the yaw moment coefficient Cn at few points against
the wind tunnel data are given in Figure 13. Overall, the model performed well at small
angles of sideslip, although it slightly overestimated Cn at negative β. Increasing β led to
a similar pattern, leading to greater coefficient misprediction at high α [4], with the CFD
model experiencing premature stalling and discrepancy with the experiment at sideslips
β~10◦. The impact of the fuselage sidewash on directional stability was further revealed
in the results and indicated the importance of proper viscosity treatment and Reynolds
number. Viscosity was set to a constant based on the wind tunnel Reynolds number and air
conditions. As a validation case for the applied SST k-ω turbulence model, we looked at its
ability to accurately predict the onset and scale of separation bubbles. Table 2 presents a
comparison of the computed flow field and tuft flow visualization.
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3. Results
3.1. Vertical Fins

As can be seen from the plot in Figure 13, equipping the initial model with vertical
fins did not change the overall picture of Cn(β) dependency and even with large (L) fins,
the model remained unstable in the yaw channel. At small angles of sideslip, both large
and small configurations had very little effect on the yaw moment coefficient Cn values.
With increasing β, only the large fins gradually started to reduce the yaw derivative. CFD
data, which duplicates the wind tunnel values, is given in this plot for validation purpose
only. In further results, they were dropped to avoid cluttering the graphs.

An insight into the inefficiency of vertical fins can be gained from the tuft flow visual-
ization and the CFD flow field pictures near the tail at different angles of sideslip (Table 2
and Figure 14). A strong separation of the bottom aft cone at β~9◦ could be noticed, leading
to a 3D vortex upstream the ventral fin and resulting in its virtually complete inefficiency.
For the upper fin, the tufts and streamlines showed that it remained attached even at
larger β > 9◦ which is a good sign. However, the computed streamlines showed that its
aft-most section received a side-washed flow from the fuselage, reducing its effective angle
of attack at moderate β and eventually driving it negative at larger β. Hence, its overall ef-
ficiency was strongly affected by interference with the fuselage (see top view of streamlines
in Figure 14).
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the upper fin and a 3D vortex near the separated ventral fin.

3.2. Vortex Generators

As has been deduced from the above flow pictures, the main reason for the vertical fin
inefficiency can be traced to the boundary flow of the fuselage and its strong influence on
the tail fins. Hence, an obvious solution is to use vortex generators to turbulate the flow
in problematic areas. First, large LVGs were added to leverage the local effective angle
of attack of the upper fin. As mentioned in the Materials and Methods section, we tested
both convergent and divergent setting angles of LVG. As can be seen from the plots in
Figure 15, the LVG_1 convergent configuration worked slightly better than LVG_2. The
geometrical angle of attack of the outer generator, where the upper fin suffered a side-wash,
increased as the model sideslip increased, which was probably the reason for the higher
vortex intensity. Simultaneously, the inner generator lost the angle of attack with sideslip
(see Table 3 below), eventually becoming useless at zero alpha. For LVG_2, this dependency
was obviously inverted.
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Table 3. Computed flow field near the vortex generators: configuration LVG_1.

β◦ 3◦ 7◦ 15◦

Cp scale
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From Table 3 above, we can notice that only the outer VG worked well for the inves-
tigated (positive) range of sideslip angles, while the inner one failed to generate a vortex
as its (geometric) angle of attack was reduced with sideslip. The geometric α of this inner
VG was equal to the VG skew angle (δ, see Table 1) minus the aircraft angle of sideslip.
Meanwhile, for the outer VG, sideslip β added to its α, and hence its efficiency increased and
reached an optimal at β = 7◦. At larger sideslips, a stall led to reduction of the overall vortex
intensity. From Figure 16 below, we can notice that the fuselage side wash and its effect on
the upper fin remained strong but was delayed to a further position downstream, and hence
a smaller portion of the upper fin experienced a negative sidewash. Further moving the
LVGs downstream could result in an even less sidewash and better tail efficiency.

Fluids 2022, 7, x FOR PEER REVIEW 14 of 23 
 

 

Figure 16. Velocity streamlines on model with LVG_1 and upper fin at β = 15° showing the fuselage 

sidewash effect on the upper fin. 

Next, in an attempt to improve the ventral fin efficiency by reducing separation of 

the bottom aft cone, small vortex generators (SVGs) were installed along the side perime-

ter of the fuselage near the aft wing. Given that separation happens on both the inner and 

outer sides of the aft cone (Figure 17), VGs were installed on both sides. 

 

Figure 17. Flow field near the fuselage aft cone. 

However, the tuft flow visualization provided in Table 4 revealed that even placing 

the SVG pattern immediately close upstream to the separation line (version SVG_2) re-

sulted in little improvement of the separated aft cone area, probably due to the 3D vortex 

structure taking place (Figure 14) being much larger than vortices generated by the SVGs, 

hence dominating their local flow. With regard to the investigated velocities of ~37–40 

m/s, SVGs were next replaced by medium-sized vortex generators (MVGs). 

  

Figure 16. Velocity streamlines on model with LVG_1 and upper fin at β = 15◦ showing the fuselage
sidewash effect on the upper fin.

Next, in an attempt to improve the ventral fin efficiency by reducing separation of the
bottom aft cone, small vortex generators (SVGs) were installed along the side perimeter of
the fuselage near the aft wing. Given that separation happens on both the inner and outer
sides of the aft cone (Figure 17), VGs were installed on both sides.
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Figure 17. Flow field near the fuselage aft cone.

However, the tuft flow visualization provided in Table 4 revealed that even placing the
SVG pattern immediately close upstream to the separation line (version SVG_2) resulted in
little improvement of the separated aft cone area, probably due to the 3D vortex structure
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taking place (Figure 14) being much larger than vortices generated by the SVGs, hence
dominating their local flow. With regard to the investigated velocities of ~37–40 m/s, SVGs
were next replaced by medium-sized vortex generators (MVGs).

Table 4. Tuft visualization of the aft fuselage with small VG installed in configurations 1 and 2.

Configuration L-Fins + LVG L-Fins + LVG + SVG_1 L-Fins + LVG + SVG_2

Tuft
visualization at

α = 2◦
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3.3. Wing Root Fairing

Fairings are a common solution to reducing interference drag in junction areas where
a discontinuity in the geometry leads to a discontinuity in the flow field, which in turn
induces strong pressure gradients, reverse flows, and separation bubbles. As investigated
earlier [4], to a large extent, the aft cone separation bubble can be traced to the low pressure
at the suction side of the aft wing propagating towards the aft cone and absorbing flow from
the higher pressure upper section, causing more reverse flows. Although not directly linked
to directional stability, 3D-printed wing root fairings were tested in the current research as a
possible quick remedy to aft cone separation in conjunction with other directional stability
solutions. As can be seen from the tuft flow visualization at large angles of attack (Table 6),
the wing root faring worked as advertised in reducing the extent and intensity of the aft
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cone separation bubble. Hence, it was used in further experiments. The fairing impact on
directional stability is illustrated in Figure 20. A slight improvement at small to moderate
α in the lift/drag ratio of the model is visible in Figure 21. The little improvements in L/D
can be explained by the increase in friction drag due to poor surface finishing of the fairing
and overall increase in the wetted area.

Table 6. Aft fuselage tuft flow visualization with wing root fairing.

Configuration Without Wing Root Fairing Wing Root Fairing Installed

Tuft flow
Visualization

at α = 8◦
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3.4. Tail Duct

The above studied combinations of localized solutions did not provide enough direc-
tional stability nor completely healed the aft cone separation bubble, which is virtually
impossible without globally changing the aft fuselage geometry. Therefore, large vertical
surfaces that are far enough from the boundary flow are inevitable for achieving enough
directional stability for a safe flight. Instead of a typical vertical fin with large wetted
area, we investigated the effect of a ducted fan, which might simultaneously improve the
propeller performance and generate enough yaw static moment, especially at significant
sideslips. Experiments at the current stage were performed without a propeller. This helped
assess directional stability margins of the model in an engine failure mode.

The results of yaw channel coefficient are given in Figure 22 below. The model was
stable until angles of sideslip β~2◦ and then remained neutral until β~5◦. This is a relatively
much better result compared to vertical fins (Section 3.1). Still, a range of 2–5◦ of sideslip is
too small for flight safety, and hence tuft and CFD flow visualizations were again used to
analyze the local flow near the duct for any potential improvements. Streamlines over the
model showed that the duct inner side was partially under the influence of the fuselage
sidewash and less severe compared to the fin given the duct was at a fairly good distance
away from the fuselage, but the local effective angle of attack of the inner shaded side of
the duct was significantly reduced (see Figure 23 and Table 7 below).
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Table 7. Pressure field of the tail duct in a horizontal section plane.

β◦ 3◦ 7◦ 15◦

Cp scale
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3.5. Final Configuration: Tail Duct Supplied with Large Fins

In view of the good results demonstrated by the tail duct regarding directional stability,
at least at small sideslip angles, we decided to keep it for further experiments and to boost
its performance with an enlarged version of the earlier studied (Section 3.1) vertical fishtail
fins. Unlike the fins in the previous case, which had a small area limited by the ability of
the flat plate material to withstand air pressure, this time, the presence of the duct gave
us an additional hard point for attaching much larger fins. Supported with three points
(Figure 24 below), even a flat zinc plate half a millimeter in thickness was able to withstand
significant air pressure at high angles of sideslip.
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Figure 24. (a) Wind tunnel model of the final configuration with a tail duct and vertical fishtail fins
with a large surface attached to it. (b) Attachment was through a 1.7 mm pin inserted in the fuselage
and through metal wires tied to the vertical duct metallic spokes.

The results of the model directional stability are plotted below in Figure 25. As can be
seen from the plot, the model in this final configuration became stable in the yaw channel
well into sideslips of 6–8◦ and remained neutral beyond 10◦. Future wind tunnel and
computational experiments with a rotating propeller might reveal the extent of interference
and mutual influence between the fins and the propeller, potentially leading to further
geometrical optimization of the fins. On the actual aircraft, thicker airfoiled vertical fins
might serve to attach the duct to the fuselage, along with similar horizontal surfaces, thus
boosting the longitudinal stability performance.
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4. Discussion and Conclusions

This study experimentally and computationally investigated a tailless nonconventional
box-wing aircraft concept with potential applications in general aviation, such as personal
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recreational planes, aerotaxis, UAV delivery, etc. An important issue that lies in the way
of certification of such flying vehicles is their limited margin of both longitudinal and
directional stability. This is a natural consequence of the core idea of the concept to get rid
of conventional tails. Multiple studies in the past decades have focused on ways to tackle
longitudinal stability, which is easy to achieve by carefully locating the aircraft center of
mass and/or ensuring enough spacing of wings. Directional stability, however, is much
more challenging in view of an extremely short fuselage. Given the studied concept has a
pusher propeller in the tail, it is virtually impossible to locate a vertical fin that is far enough
from the center of mass. In addition, extending the fuselage aft section to accommodate a
conventional tail would result in significant wetted area and shift the fuselage mass further
backwards, which would in effect reduce the lever arm by shifting the aircraft center of
mass Hence, in this study, we investigated novel ways to solve this issue while keeping the
fuselage geometry intact. A ducted fan and vertical fishtail fins were applied, which were
tailored to fit inside the space between the duct and the aft fuselage cone.

The novelty of this research lies in using multiple nonconventional elements for
directional stability of a box-plane layout. This excludes the necessity for a conventional
tail fin with an extension of the aft fuselage, hence providing the least possible wetted
area or “price” to pay for stability, both in terms of friction drag and structural mass.
Among the investigated solutions were bioinspired novel surfaces presenting continuity
of the aft fuselage geometry itself, combined with vortex generators to improve their
efficiency. In addition, equipping the pushing propeller with an airfoiled duct was found to
provide very satisfactory results and solved the issue of directional stability of this aircraft
concept. The results of the physical experiments were supported with computed local
flow fields of pressure and velocity streamlines. This approach revealed deep insights
into local flow directions and effective angles of attack as well as the extent of interference
zones between different elements, pointing towards sources of efficiency or inefficiency of
different solutions and the potential solution.
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